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The stability conditions of the Patterson theory and the Sanchez-Lacombe equation-of-state theory have 
been compared. It turned out that, for a certain special case, the free-volume part for both conditions can be 
put into analytically similar forms. Moreover, numerical calculations show that this special case is also a 
good approximation of the general case. 

(Keywords: equation-of-state theory; Patterson theory; Sanchez-Lacombe theory) 

INTRODUCTION 

Numerical model calculations with the Patterson (PA) 
theory and the Sanchez-Lacombe (SL) equation-of-state 
(EOS) theory have revealed192 that both theories yield 
similar results concerning the description of phase 
diagrams, the prediction of excess volumes and the 
influence of pressure on miscibility. Moreover, the cause 
of mixing and demixing, i.e. the influence of free volume 
and the effects of enthalpy, are predicted similarly by 
both models. Considering the fact that the foundations 
of the two models are entirely different, this seems 
surprising. 

The PA theory is based on the Prigogine3 correspond- 
ing-states theory, which is a cell model theory with a 
configurational partition function based on the Hirsch- 
felder-Eyring partition function4. Flory et a1.5V6 gave a 
modified version of this theory, which we will call 
Prigogine-Flory (PF) theory. 

From this starting point, Patterson et aZ.‘,* derived a 
simpler EOS theory, which is formally identical with the 
Flory-Huggins theory, but whose interaction parameter 
also contains EOS contributions. 

The EOS theory due to Sanchez and Lacombe’.” is a 
lattice-fluid theory. Formally it is similar to the Flory- 
Huggins theory, but a free-volume term is introduced 
via vacant lattice sites, thus making it an EOS theory. 
Its EOS does not satisfy a principle of corresponding 
states. 

For the description of PVT data of polymers, both 
the PF (and therefore the PA theory) and the SL theory 
do not give good predictions of the behaviour for all 
pressure ranges”” They give better results for gases 
and supercritical fluids, which is probably due to their 
van der Waals-like potential energy dependence. If the 
PVT data are restricted to low pressures, however, they 
are described fairly well. Recently, the SL theory 
has also been successfully used for the description of 

the phase behaviour of homopolymer-copolymer 
blends13. 

THEORY 
Patterson theory 

In the PF theory, the quantities characterizing a liquid 
are the reduction parametersp*, vs* and T*. They can be 
used to express the reduced pressure, volume and 
temperature, defined by: 

Here p* is the reduction pressure; 7”* is the reduction 
temperature; w, is the specific volume; v,* is the specific 
‘hard-core volume’, i.e. the specific volume at 0 K; 21 and 
Al* are respectively the volume and the hard-core of a 
polymer segment. These relations are valid for both pure 
components and mixtures. 

The reduced quantities are linked by the EOS. It is 
given by: 

pG 64 1 
- 
T 

=-i----- 
G-1 6T 

and the reduction parametes are linked by: 

p*v* = ckT’ (3) 
where 3c is the number of external degrees of freedom 
per segment. 

For polymer mixtures, the quantities p* and T* are 
linked to those of the pure components, and an 
additional parameter X12, the contact energy parameter, 
occurs. The sizes of the hard-core volumes for a segment 
can be chosen arbitrarily, and are assumed to be equal 
for both components, vi = w; = u*. In the present work, 
the geometric mean of the value of the two monomeric 
units is chosen. 
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For p = 0, 6 and f are linked by the EOS. Both are a 
measure of the free volume of the liquid. They can be 
calculated from the thermal expansion coefficient Q at 
p=05. 

fill3 -I= 
QT 

3(1+ CYT) 

and from the EOS at p = 0: 

F= (e - 1) 
6413 

For a binary mixture, the difference of free volume of 
the component is characterized by: 

T; 7=1--.- 
T; 

(6) 

The paramters U: and r* can be dertermined from 5, T 
and w,. Morover, p* is obtained from: 

$ = ?v2T 
IE. (7) 

The stability condition of the PA theory is now given 
by: 

1 1 
2x<-+- 

r1% r2@2 

with the number ri of segments per chain of component i, 
and the corresponding volume fraction @i. (The segment 
and surface fractions appearing in the PF theory are set 
equal to the volume fractions.) Equation (8) is formally 
identical to the stability condition of Flory-Huggins 
theory. However, in this case, the x parameter also takes 
into account non-combinatorial contributions. It con- 
sists of an interactional and free-volume contribution 
and reads’: 

X=5?+5(T+-%fl)2 (9) 

where the first term represents the interactional part xi, 
and the second the free-volume part xf. Here a1 and 6l 
are the expansion coefficient and compressibility of 
component 1 at pressure p respectively; U1 is the internal 
energy of component 1; y2 is a measure of the relative 
weakness of the l-2 contact to the average of 1- 1 and 2- 
2 contacts; and C,, is the configurational heat capacity of 
component 1. For the PF theory they are given by: 

(10) 

(11) 

(12) 

where Vi is the molar hard-core volume, X12 the contact 
energy parameter of the PF theory and: 

Finally, n is given by: 

PT -q=l-- 

Pt (14) 

The meaning of 7r is not as obvious as that of r. However, 
we note that for the special case of cl = c2, it can be 
deduced from equation (3) that QT = -T. Moreover, the 
second part in the brackets of equation (9) can be 
expressed as: 

Sanchez-Lacombe 

KP PC2 -=_ 
QT 1 +@? 

theory 

(15) 

The SL theory is a lattice-fluid theory. Besides 
occupied lattice sites, it also comprises holes, i.e. vacant 
lattice sites. A binary system is formally treated as a 
three-component system, where the third component is 
represented by the holes. Hole-hole and hole-mer 
interactions are assigned a zero energy, to that there 
remains only one interaction parameter xsL-as in the 
Flory-Huggins theory. As in the PF theory, a liquid is 
characterized by three reduction parameters p*, u,* and 
T*. Again vH is the specific hard-core volume, which in 
this case represents the specific volume of the occupied 
lattice sites. 

In analogy to equation (1) reduced quantities can be 
defined according to: 

(16) 

with the number No of vacancies, and rN = rl N, + r2N2 
the number of occupied lattice sites. Ni is the number of 
molecules of component i, ri the corresponding number 
of mers per chain and N = Ni + N2 the total number of 
polymer chains. 

The EOS of this model is given by: 

$+fi+i[,(l--:)+(1--t):] =0 (17) 

and the reduction parameters are connected by 

$17 = kT* (18) 

Again, the quantities p* and T* of a mixture are related 
to those of the pure components, and the interaction 
parameter xsL. However, the volume v* of a lattice site is 
fixed; it cannot be chosen arbitrarily in this model. It 
turns out to have only about lo-20% of the volume of 
a monomer unit. The size of the sites of a mixture is an 
average of those of the pure components, and depends 
on composition. Hence, the number ri of lattice sites 
occupied by one molecule in the mixture also differs 
from the number ri” of occupied sites in the pure 
system. 

For vanishing pressure and infinite chain length, the 
reduced variables 6 and T are linked by the EOS. As for 
the PF theory, both quantities are a measure of free 
volume, and can be calculated from the thermal 
expansion coefficient for p = O14. 

aT= - 
1 

T/(1 - l/G) - 2 (19) 
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and the EOS at p = 0: 

-j+Pkn(l -i) +k] =0 (20) 

However, these equations cannot be solved explicitly 
for the desired variables, so they have to be solved 
numerically. From G, T and u,, of and T* can be 
obtained and p* is obtained from: 

p* = (Yij2T 
n (21) 

The intermolecular energy U of the system can be 
expressed as: 

u = -+ (22) 

with 

and 

E* = a,~;~ + a2& + +,Q2kTxsL (23) 

XSL = (E;I + ~;2 - ‘X2)IkT (24) 

where pi;. is the mean interaction energy of a mer of 
component i with its neighbouring mer of component j. 
xsL is the analogue of the x parameter of the original 
Flory-Huggins theory and @‘i is the hard-core volume 
fraction. 

U can be put in the form: 

u=_p!! 
6 

which is formally the same as for the PF theory. 
The stabilitv condition obtained from this theory is 

given by10,14: ’ 

with 

and the ratio 

+e (v- 1) 
T (@I + ~a21 

* 
u=2)’ 

v; 

(26) 

(27) 

(28) 

(29) 

which for w # 1 corresponds to the introduction of a 
surface area effect”. 

This stability condition for the SL theory can be 
formulated similarly to the one of PA theory’. In analogy 
to the x parameter of the PA theory, a parameter A 
consisting of three parts an be defined: 

A=h,+R,+Ar (30) 

with 

A, = ;(@I + ~+~)xsL 

1 
A, = $1 - v)X12 

Af = & FQ2p*~(@l + vQ2) 

The stability condition then assumes the form: 

(31) 

(32) 

The first term A, is an interactional term, the second 
term A, arises from the surface area effect, hence it is also 
an interactional term, and Ar is due to the introduction of 
free volume. As can be seen, Xi2 and xsL have the same 
temperature dependence. Therefore, it is clear that both 
interactional terms have the same temperature depen- 
dence; they are proportional to l/(iYT). The same 
temperature dependence is exhibited by the interactional 
term of the PA theory. However, in contrast to the x 
parameter of the PA theory, the parameter A depends on 
composition and on the chain lengths of the components. 
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Figure 1 Description of PVT data (0) of low-molecular-weight 
polyisoprene (PI) by EOS theories: (a) W, vs. T; (b) p vs. v,. SL theory 
(-): p* = 383 MPA, II: = 1.0405cm3 g-l, T’ = 631.2K. PF theory 
(-): p’ = 469.7 MPa, U: = 0.9396cm3g-‘, T’ = 6713K (refs 1, 2) 
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DESCRIPTION OF PVT-DATA BY THE PF AND 
SL THEORY 

In Figure la, the specific volume of a low-molecular- 
weight polyisoprene (kf, = 2600 g mol-‘, M,,,/M, = 
1.08) as a function of temperature is shown for pressures 
of 0, 100 and 200MPa (downwards) respectively. The 
dots represent experimental data, the full lines are 
calculated with PF theory and the dashed lines are 
calculated with SL theory. The reduction parameters 
were calculated at p = 0 with equations (4) and (5) and 
equations (19) and (20) respectively. Their determination 
is described more fully in ref. 1. In Figure la it can be seen 
that for low pressures the data are described well by both 
theories. For lower temperatures w, is predicted some- 
what too high; for higher temperatures it fits the data 
very well. This means that the expansion coefficient for 
lower temperatures is predicted too low. The value given 
by SL theory is even lower than that given by PF theory. 
However, for higher temperatures it is the converse, the 
coefficient of expansion predicted by SL theory is higher 
than that predicted by PF theory. 

For higher pressures the experimental and calculated 
data disagree. The deviation from experimental data is 
much higher for SL theory than for PF theory. This can 
also be seen from Figure lb, where pressure vs. specific 
volume is shown at 125°C. Again, for low pressures the 
agreement between experiment and theory is fairly good. 
The higher the pressure, the higher is the deviation from 
experiment, but the description of PF theory is superior 
to the one of SL theory. 

However, one can state that both theories exhibit the 
same principal behaviour concerning the description of 
PVT data. 

RESULTS 

At first glance, A (in particular A,) seems to be entirely 
different from the corresponding expression of x. 
Therefore, the similarities exhibited by numerical calcu- 
lations seem surprising. 

To gain deeper insight, we consider Ar for the special 
case of G1 = @‘2r u= 1 and Y! = ri. Then Xi2 and 9 
reduce to: 

Xl2 = ;(T; - T;) 

q&$2 
u 

and hence Rr reads: 

A,=&+;- T;12 (35) 

The goal is now to show that it is possible to get 
equation (35) into a form that is similar to the free- 
volume term of the PA x parameter. To this end, we 
consider the heat capacity Cr, of a system with volume V 
and energy U, which is given by: 

c, = [ ($),p]aV (36) 

Differentiating the energy given by equation (25) with 
respect to V, and inserting the result into equation (36) 

yields: 

c, = T(l +jX2) (37) 

As in the case of the PA theory, we assume that 
V’ = NAv* is the molar hard-core volume. Equation (18) 
then yields: 

p*V* = RT’ (38) 
(NA is the Avogadro number and R the gas constant). 
Moreover, the relation: 

KP pfi* _p 
-- 1 +p?? CYT (39) 

is valid, which is the same as equation (15) in PF theory. 
From this: 

CYG2T 
p*” =- 

1 +pG (40) 

is obtained. By solving equation (37) for (Y and inserting 
into equation (40) the following result can be obtained: 

p*K. cp 1 
fi=RT*(l +jj$)* =RT* 

S(l -s)2 (41) 

Inserting into equation (35) this yields for Ar: 

Ar=z(v)2(l _s)2 (42) 

Compared with xr from the PA theory, it can be seen 

o’35 ti 
I;; -;:;....;;-:- 

SL 

o.20 L i 
50 100 150 200 

a Temperature [“Cl 

o.30 / 

0 40 80 120 160 200 

b Pressure [MPa] 

Figure 2 Specific heat capacity of PI predicted by SL and PF theory: 
(a) as a function of temperature; (b) as a function of pressure 
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Figure 3 Temperature dependence of the various contributions of (a) 
A and (b) x for a compatible system (see text). SL theory (a): 
pi = 428.1 MPa, w,‘r = 0.9232cm3 g-‘, Ti = 796.3 K (PS); p; = 417.6 
MPa, & = 0.862cm3g-‘, 7-T = 760.8K (PCHMA); xs4ct 
057633K. PF theory (b): p; = 522.6MPa, u*, = 0.8356cm g 
Ti = 8508 K; p; = 511.4 MPa, viz = 0.7791 cmSg-‘, 
XI2 = -0.1 Jcm3 (refs 1, 2) 

T; = 8115K; 

that for the case 7r = --7 in the PA theory both free- 
volume terms look in fact very similar; T in the PA theory 
corresponds to (7’; - T;)/T* in the SL theory. Another 
difference is the fact that Cr, and the state variables 
appearing in the free-volume terms of SL theory 
(equation (42)) refer to the 50/50 mixture, whereas 
those of the PA theory refer to component 1. The latter 
is due to the fact that x from the PA theory is derived 
from a series expansion about Ti. However, since the 
principal behaviour of the w-T and p-v curves is the 
same for both models and for all compositions, the same 
should be true for Q, K and Cr. 

The heat capacity of the SL theory can be expressed 
similarly to the one of PF theory. 

c 

P 
=p*v* - 

,,CP 

where C, is given by: 

c,= _ (1 +pG2)2 
VT{Vp[l/(V - 1) + I/r] - 2) (44) 

The heat capacities predicted by the two theories as a 
function of temperature (at p = 0) and pressure (at 
T = 1OO’C) are shown in Figures 2a and 2b respectively. 
The C, values given in equations (12) and (43) 

2.0 

1.5 

1.0 
:: 
“0 

0.5 

0.0 

-0.5 
0 40 80 120 160 200 

a Pressure [MPa] 

4.0 /- 

\ 
3.0 ', 

'. 
.-._ 

2.0 -I._ Xl ---___ 

F 
,o 

x 
0.0 

-1 .o 
Xl 

-2.0 ,_A 
0 40 80 120 160 200 

b Pressure [MPa] 

Figure 4 Pressure dependence of the various contributions of (a) A 
and (b) x (see text). The same parameters are used as in Figure 3 

respectively are molar heat capacities, i.e. they refer to 
one mole of segments. However, the sizes of the lattice 
sites of the two theories are different. So, in order to be 
able to compare the results of both models, the specific 
heat capacities are calculated. 

Since the expansion coefficient predicted by SL theory 
is lower for low temperatures and higher for high 
temperatures than predicted by PF theory, the same is 
true for the heat capacity. SL theory also predicts a 
greater influence of pressure on heat capacity than PF 
theory. However, as one expects, the principal behaviour 
is predicted to be the same by both theories. Therefore 
the temperature and pressure dependences of hr and xf 
should be very similar. 

DISCUSSION 

In order to be able to derive equation (42) some 
assumptions were necessary. Now, we want to examine 
how the results change when these assumptions are 
relaxed. One of the assumptions was that both compo- 
nents have equal chain lengths in their pure states; 
another one was the neglect of the surface area effect. 

First we note that only the reciprocal of the chain 
lengths ri” enters into the equations. Therefore, for 
sufficiently long chains, it is a good approximation to 
neglect this term. Moreover, for vanishing or low 
pressures, the value of v is not important either. Hence, 
the essential difference to the PA theory which remains is 
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the concentration dependence of Ar. However, the PA 
theory is derived from a series expansion, where higher- 
order terms are neglected. By keeping these higher-order 
terms, the x parameter of PA theory would be 
concentration-dependent as well. 

According to the statements above, for low pressure 
the exact and the approximate value of Ar should be very 
similar. This is demonstrated in Figure 3a, where A for 

compatible 
>, = 230 000 g 

pol mer 
1 

pair (polystyrene (PS), 
mol- , M,/M, = 1.11 and poly(cyclo- 

hexyl methacrylate) (PCHMA), M,, = 114OOOg mol-‘, 
M,/M, = 1.26) is shown as a function of temperature 
for p = 0 and Qp2 = 0.5. The dashed lines represent the 
curves for 21 = 1 and r10 = rzO, and the full lines give 
the exact values. It can be seen that the approximate 
and the exact hr basically coincide. 

For the case of v = 1, the interactional parts 
hi = A, + A, of A (A, = 0 for v = 1) can be put in a 
form that formally corresponds to that of xi. However, 
the results obtained in this way differ appreciably from 
the exact values, as can be seen from Figure 3~. They 
differ not only in magnitude, but also in sign. Therefore, 
their predictions would be totally different, in this case 
complete immiscibility would be predicted. This means 
that the surface area effect must not be neglected. 

The x parameter for the same system is shown in 
Figure 3b. All three curves show a similar behaviour as 
the corresponding exact A. Therefore, only when the 
surface area effect in SL theory is included does it yield 
the same results as PA theory, where no surface area 
effects have been considered. Its influence on the free- 
volume term, however, is negligible. 

The influence of pressure on A is shown in 
Figure 4~. Again, the dashed lines give the results for 
v = 1 and ry = r;, and the full lines give the exact value. 
It can be seen that even for higher pressures the exact and 
the approximate value of Af agree. The value of ZI 
obtained for this system is w = 1.0211. However, 
calculations show that, even for values which differ 
appreciably from 1, the picture hardly changes. 

Therefore, the expression in equation (42), derived for 
a special case, is except for the neglect of the concentra- 
tion dependence, a good approximation. However, this 
concentration dependence only leads to other symme- 
tries of the phase diagrams; it does not change the 
principal behaviour. Finally, Figure 4b shows the 
pressure dependence of x, which is similar to that of 
the corresponding A. 

CONCLUSIONS 

It could be shown that for a special case the free-volume 
term of the stability condition of the SL theory can be 
put into an analytically similar form as the free-volume 
part of the PA theory. Moreover, numerical calculations 
have shown that this special case is a good approxima- 
tion for the more general case. The pressure- and 
temperature-dependent quantities appearing in this 
term can all be expressed by reduced state variables. 

Now, the description of PVT behaviour of polymers 
is-at least qualitatively-very similar by both the SL 
and the PF theory. Therefore, the fact that the pressure 
and temperature dependences of the free-volume term 
are predicted to be similar by both models is not 
surprising any more. 

The dependence of the interactional parts on tem- 
perature and pressure is also similar for both models. 
However, the neglect of the surface area effect, which 
can be made in the free-volume part of SL theory, must 
not be made in the interactional part. It would 
completely change the behaviour. This is what one 
expects, because the energy of a system is influenced by 
the number of interactions per mer. The fact that the 
pressure and temperature dependences of the inter- 
actional term are predicted similarly by both models 
might be expected, since both terms are proportional to 
l/GT. 
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